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EMBEDDINGS OF C(A) AND L 1[0, 11 
IN B A N A C H  LATTICES 

BY 

H E I N R I C H  P. L O T Z  A N D  H A S K E L L  P. R O S E N T H A L *  

ABSTRACT 

It is proved that if E is a separable Banach lattice with E '  weakly sequentially 
complete, F is a Banach space and T: E --~ F is a bounded linear operator  with 
T'F' non-separable,  then there is a subspace G of E, isomorphic to C(A), such 
that TI~ is an isomorphism, where C(A) denotes  the space of cont inuous real 
valued functions on the Cantor  discontinuum. This generalizes an earlier result 
of the second-named author.  A number  of conditions are proved equivalent for 
a Banach lattice E to contain a subspace order isomorphic to C(A). A m o n g  
them are the following: L ~ is lattice isomorphic to a sublattice of E ' ;  C(A)' is 
lattice isomorphic to a sublattice of E ' ;  E contains an order bounded sequence 
with no weak Cauchy subsequence;  E has a separable closed sublattice F such 
that F '  does not have a weak order unit. 

w Let A denote the Cantor  discontinuum and let L 1 denote  the Banach 

lattice L t ( m  ) where m is Lebesgue measure on the unit interval with respect to 

the o'-algebra of Lebesgue measurable sets. Our  main results are as follows: 

THEOREM 1. Let E be a separable Banach lattice with E'  weakly sequentially 

complete, let F be a Banach space, and let T" E --~ F be an operator with T 'F '  

non-separable. Then there is a complemented subspace G C E isomorphic to C(A) 

such that Tic is an isomorphism. 

We note that Theorem 1 generalizes the main result of [10], where the special 

case of Theorem 1 was established for E = C(X) ,  X a compact  metric space. 

The proof follows readily from lattice analogues of the results and techniques of 

[10]. The argument is given at the beginning of w and uses Lemmas  1, 2 and 3 

of w 
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THEOREM 2. Let E be a Banach lattice. Then the following assertions are 

equivalent: 

(a) L 1 is lattice isomorphic to a closed sublattice of E'.  

(b) C(A)' is lattice isomorphic to a closed sublattice of E' .  

(c) There is a compact space K and a continuous surjection ~ : K -~ A such that 

the corresponding isometry C(A)--~ C ( K )  (defined by f --~ f o~ )factors through E, 
T S C(A)-~ E C ( K )  with T an order isomorphism and S positive. (I f  0 < e, then K, 

~, T, and S can be chosen so that II Tll IIsll --<1+ e.) 

(d) There is a positive embedding T: C(A)---~ E. 

(e) There is O < x  E E  such that the order interval [0, x] is not weakly 

sequentially precompact. (In other words, E has an order bounded sequence with 

no weak Cauchy subsequence.) 

(f) There is a (positive) embedding T: ll--~ E with T majorizing. 

(g) There is a separable closed sublattice F of E such that F' does not have a 

weak order unit. 

(h) There is a separable closed sublattice F of E such that ll(F) for some 

uncountable set F is lattice isomorphic to a closed sublattice of F'. 

(i) There is a (separable) closed sublattice F of E and an almost interval 

preserving operator T from F onto C(A). 

If, in addition, E is separable one can choose F = E in (g), (h), and (i). Moreover, 

(a)-(i) are then equivalent to 

(j) Same as (c) with ~ a homeomorphism. In particular, C(A) is order 

isomorphic to a closed subspace orE which is the range of a positive projection. 

We note that the equivalent statements (a), (b), (f), (h) and (i) of Theorem 2 

are lattice analogues of results in general Banach spaces due to Pelczynski [8] 

and Hagler [3]. However,  (d) has no analogue for general Banach spaces; for 
example C(A) does not embed in l ~ yet C(A)' embeds in (l~) ' =  l | 

COROLLARY. If l ~ embeds in a Banach lattice E but not complementably then 

(a)-(i) of Theorem 2 hold. 

PROOF. If l ~ embeds in E then by theorem 2 of [7] it follows that co or L 1 is 

lattice isomorphic to a closed sublattice of E' .  But since I z is not complemented 

in E, Co does not embed in E '  by a result of Bessaga and Pe~'czyfiski [1]. Hence, 

(a) of Theorem 2 holds. 

The proof of Theorem 2 uses further lattice analogues of the results of [10] (in 

particular Lemma 6 which can be deduced from the crucial lemma 1 of [10]) as 

well as the machinery in Banach lattice theory developed in [5], [6], and [7]. 
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In the next section we review some notations and definitions in the theory of 

Banach lattices; preliminary lemmas are g iven  in w and the proofs of the 

theorems are given in w 

02. In this paper  we consider Banach spaces over  the real field. The dual of a 

Banach space is denoted by E ' .  By an opera tor  T: E--*  F between Banach 

spaces we mean a continuous linear map. The adjoint of an opera tor  T is 

denoted by T' .  An opera tor  T is called an isomorphism or an embedding if T is 

injective and has closed range. 

The terminology and notations for Banach lattices follow [12]. For the sake of 

convenience we explain frequently used terms. 

Let E be a Banach lattice and x, y E E with x _-< y, then the order  interval 

[x,y]  is the set {z E E :  x _-< z _-< y}; x and y are disjoint if Ix I A l y [ =  0. A linear 

subspace I of a Banach lattice E is called an ideal if x E I and y E E with 

l y l_-  < l x l  implies y E / .  An ideal I of E is called a band if A C I  and 

sup A = x E E implies x ~ L If 0 =< x E E then the ideal generated by x is called 

a principal ideal and denoted by Ex. An element 0 < u E E  is called a 

quasi-interior point if the principal ideal E ,  is dense in E and is called a weak 

order unit if E is the band generated by u. 

An opera tor  T: E --~ F between Banach lattices is called positive if 0 _-< x E E 

implies Tx >= O, and is called an order isomorphism if 0_---x is equivalent to 

0 <- Tx ; T is called a lattice homomorph i sm if x A y = 0 implies Tx A Ty = 0; if, 

in addition, Tx A Ty = 0 implies x A y = 0, T is called a lattice isomorphism (a 

lattice isomorphism is an order isomorphism). The reader  should note that 

lattice isomorphisms and order  isomorphisms are not necessarily operator  

isomorphisms since their ranges are not required to be closed. A positive 

opera tor  T: E ~ F is interval preserving (resp. almost interval preserving) if 

T[0, x] = [0, Tx] (resp. if T[0, x] is dense in [0, Tx]) for all 0 ~ x  E E. We shall 

make frequent use of the following fundamental  fact ([6]): Let T: E ~ F be a 

positive operator;  then T is almost interval preserving if and only if T '  is a lattice 

homomorphism while T is a lattice homomorph i sm if and only if T '  is (almost) 

interval preserving. 

An opera tor  T from a Banach space E into a Banach lattice F is called 

majorizing if T maps every (norm-) null sequence into an order interval. 

If B is a band in the dual E '  of a Banach lattice E then there is a unique 

positive contractive projection P from E '  onto B with Px'= 0 for all x ' E  E '  

satisfying x '  A y '  = 0 for all y '  E B ; P is called the band projection onto B. 
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03. In this section we collect several lemmas which will be used in w below 

for the proofs of Theorems 1 and 2. The first two lemmas are minor variations of 

results in [10]. 

LEMMA 1. Let X be a compact Hausdorff space and let {A, }~r- C C(X) '  be a 

family isometrically equivalent to the usual basis of I~(F) for some infinite set F 

such that for the weak * topology the closure K of {A~},~r is dense-in-itself and 

metrizable. Then for all 0 < e < 1 there is a subspace F of C ( X )  isometric to C(A) 

such that 

rlfll---- (1 - e ) - '  

for all f E F. 

PROOF. At first we remark that in proposition 3 of [10] the separability of the 

Banach space is only needed to ensure that K is metrizable. Moreover, the index 

set N can be replaced by any infinite set ['. The lemma now follows immediately 

from proposition 3 and theorem 2(b) (i) of [10]. 

LEMMA 2. Let E be a separable Banach lattice with E'  weakly sequentially 

complete and let W be a convex bounded symmetric non-norm -separable subset of 

E'. Then there is a 8 > 0 such that for all e > 0 there exist an uncountable family 

{w'~}~rC W and a family {x-~}ver C E'  of pairwise disjoint elements such that 

p t ! I Iw , -  x~ll<= e and Ilxvll= 8 

for all 3J E F. 

PROOF. It follows from (2.4) (c) of [5] that E '  satisfies the equivalent 

conditions of (2.1) of [5]. In particular, each closed ideal of E '  is a band and each 

order interval [0, x'] in E '  is weakly compact. Since on [0, x'] the weak and the 

weak* topologies coincide the interval [0, x'] is weakly separable and, because of 

convexity, norm separable. Hence the norm closure of every principal ideal in E '  

is a separable band in E' .  If E = C ( X )  and x ' , y ' ~  C(X) '  then L'(Ix'l) is the 

band in C(X) '  generated by I x'l and (dy ' /dx ' )x '  is the band projection of y '  onto 

the band L~(Ix'l). Now the proof is almost verbatium the same as the proof of 

lemma 4 in [10]; one has only to replace L ' ( Ix ' l )  by the band generated by Ix'l 

and (dy ' /dx ' )x '  by Px,y' where Px, is the band projection onto the closed ideal 

generated by x'. 

The next two lemmas are well known. 

LEMMA 3. Let E be a Banach lattice and let 0 < u @ E. Then there is a 

compact Hausdorff space X and a lattice isomorphism T: C(X)---~ E onto the 
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principal ideal E.  with T1 = u and IlZll = Ilu II. The adjoint T'  is necessarily a 

lattice homomorphism and interval preserving. 

PROOF. The  existence of X and T follows immediate ly  f rom Kakutani ' s  

T h e o r e m  on AM-spaces  since the principal ideal Eu with [ -  u, u] as unit ball 

is an AM-space  with unit [12, (II.7.2) cor.]. Since T is a lattice homomorph i sm  

and interval preserving,  T '  is a lattice homomorph i sm  and interval preserving 

(see w 

LEMMA 4. Let X be a compact Hausdorff space, let 0 < f ~ C ( X ) ,  and let 

IX, v ~  C ( X ) '  with Ix ^ v = O. Then there exist two sequences (g . ) , ( h , )C[O, f ]  

with 

and, for all n ~ N, 

lim,~ (g. , /x)  = (f,/x),  

lim. (h., v> = (f, v) 

supp g, fq supp h, = Q. 

PROOF. Since/x  and v are positive and dis joint /x  + v = ]/x - v] .  It follows 

now from (II.4.2) cor. 1 of [12] that 

(f, t* + v) = sup if, ~ - u) 
Ifl~=! 

_-< sup ((f+,/.t ) + (f- ,  v)) 
IfJ~l 

--<(f,~ + ,4. 

Hence there is a sequence ( f . ) C [ - f , f ]  with l im . ( f ~ , / x )= ( f , / . t )  and 

lira. (f~, v) = (f, v). By putting g. = (f~+- n - ' l )  § and h. - ( f ~ -  n- ' l )+  the se- 

quences (g.) and (h.)  have the desired properties. 

Our next lemma shows that (a) of Theorem 2 can be replaced by the condition 

that there exists a non-zero lattice homomorphism from L '  into E'. 

LEMMA 5. Let E be an AL-space  and let T be a lattice homomorphism from E 

into a Banach lattice F with II T [1 = 1. Then for every e > 0 there exists a band 

B C E ,  B ~  {0}, such that IlTxtI>-(1-e)llxll for all x E B .  

PROOF. Choose  0 < u ~ E with [Iu II -- 1 and II Tu  II > 1 - e. Let  B, = E ,  and 

T, = TIR,. Since u is a weak order  unit in B1, by Kakutani ' s  T h e o r e m  [12, II. 

8.5] B~ is norm and lattice isomorphic  to a space L I(X, E, /x ), /x finite. Since 
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IIT, l l : > l - e  there exists 0 < y ' C F '  with Ily'll = 1 and I I T I y ' l l > l - e .  Hence 

there exists a set A E ~ , / z ( A )  > 0 such that (T~y')(t)  = 1 - e for all t E A. Now 

let B be the band of all equivalence classes of functions vanishing outside A 

/z-a.e. Then for all f ~ B, 

IIT,fll = II Zl If] 11 >- <If/, T'ly')=> (1 - ~)llfll. 

Since B, is a band in E, B is also a band in E with IITfll >- (1- E)llfll. Since 

/.t (A)  > 0, it follows that B J /0} .  

Following Pej'czyfiski [8], a sequence (A~) of subsets of a set A is called a tree 

if A2i N A2i+l = ~l and A2i U A2i+l C A, for all i ~ N. In the sequel we denote  the 

set of all Lebesque measurable subsets of [0, 1] with non-vanishing measure 

by ~+. 

LEMMA 6. Let E be a Banach lattice such that there exists a non-zero lattice 

homomorphism from L ~ into E'.  Then given e > 0 ,  there exists a compact 

Hausdorff space X, a tree (K,) of compact sets in X, a lattice isomorphism 

U: C(X)---~ E onto an ideal of E with II UH = 1, and a sequence (x'i) of positive 

elements in E '  with ]I x ~t] <= 1 + ~ such that for all i, U'x ~ is a probability measure on 

X with supp U'x'i C K,. 

PRooF. We give two arguments. The first is a fairly quick deduction from the 

results of [10]. 

Assume e < 1. Let R : L'--~ E '  be a lattice homomorphism with IIR [I = 1. 

Choose 0 < u E E with Ilu II = 1 such that IIR'u II > (1 + ~e) -1 when u is consi- 

dered as an element of E". By Lemma 3 there exists a compact Hausdorff space 

X and a lattice isomorphism U: C(X)--~ E with U1 = u, II Ull = 1, and such that 

U'  is a lattice homomorphism and interval preserving. Then U'R is a lattice 

homomorphism with I]U'RII>(I+~e)- ' .  By Lemma 5 there exists a band 

B C LZ, B t { 0 }  such that G = U ' R B  is a closed sublattice of C(X) '  lattice 

isomorphic to L '  and thus isometric to L '  with II(U'RI,~)-'II<= 1 + e/3. By the 

known structure of such sublattices (see proposition 2 of [10]), there exists a 

regular Borel probability measure ~t on X and a o'-algebra ~ of Borel subsets of 

X such that (X,~, /z  I~  ) is a purely non-atomic measure space and G = 

L l(/z ] ~). (The point of the correction to [10] is that a general subspace of C(X) '  

isometric to L ' has a slightly more complicated structure; however the argument 

for proposition 2 of [10] is indeed valid for sublattices of C(X)' . )  Then by lemma 

1 of [10] there exists a tree (K,) of compact sets in X and a tree (F~) of elements 

of ~ so that /z(K~)>0,  /.t(F~)~(1 + ~e)/z(K~) and Ki C G  for all i EN .  Thus 

fixing i, [~(Ki)]-~XF, is a positive element of G of norm at most (1 + ~ ) .  Since 
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[[(U'RIB)-'II-<- 1 + }e, there exists a positive element y : E  E '  with ][y[ll =< 

(1 +}e)  2< 1 + e and U'y'~ = [tz (K~)]-1XF,. Since U'  is interval preserving, there 

exists an element x '~ E E with 0 -< x', =< y '~ and U'x '~ = [/~ (K~)-'])0,,. Since II x',ll <= 

[] y'~lt =< 1 + e, this completes the first argument. 

An alternate and self contained argument, using purely lattice theoretic 

methods, is as follows: 

Let R : L~ ~ E '  be a lattice homomorphism with ][ R I[ = 1 + e and let 'R = 
RI~. Then there exists 0 < u E E with JJ u JJ = 1 and ]]'R(u)Jl > 1 + �89 By Lemma 

3 there exist a compact space X and a lattice isomorphism U: C ( X ) ~  E with 

U1 = u and ]] U][ = 1 such that U'  is a lattice homomorphism and is interval 

preserving. Thus U'R is also a lattice homomorphism. If we denote  'R o U by T 

then fA Tfdt = (f, U'RXA) for all f E C(X) and all A E E+. 

Now choose a sequence (e~) in R with 0 < e~, and e2~, e2~+1 < e~ for all i E N. 

We shall construct a sequence (f,) in C(X),  0_-<f~ =< 1, and a tree (A~) of sets in 

[0, 1], A~ E E§ such that the sequence (K~) with K~ = supp f~ forms a tree of sets 

in X and such that (Tf , ) ( t )>l+e,  for all t E A , .  Let f , = l .  Since I l r l [ [=  

[l'Ru [[ > 1 + �89 there is a set A~ E E+ such that (Tfl)(t) = (T1)( t )  > 1 + �89 for all 

t E A1. Suppose f, and A~ have been constructed with (Tf~)(t) > 1 + e~ for all 

tEA~.  Choose B, C E E +  with B f q C = O  and B U C C A ~ .  Then 

U'RxB A U'RXc = 0. Hence by Lemma 4 there exist two sequences (g.) and (h.)  

of positive elements with g. + h. _-< f~ and supp g. fq supp h. = O Then all n E N, 

such that lira. (g., U'RxB) = (f,, U'RxB) and lim, (h., U'R)r = (f, U'RXc), or 

equivalently, such that lira. fB Tg.dt = fB Tf~dt and lira. fc  Th.dt = fc Tf, dt. 
Since 0 _-< Tg. <= Tf~, and 0 _-< Th. <= Tf~ there exist subsequences (g.k) and (h. k) 

such that the sequence (Tg.~) (resp. (Th.~)) converges almost uniformly on B 

(resp. C) to Tf~ (Egoroff's Theorem).  Hence there exist two positive functions f2~ 

and f2~+, in C(X) and sets A2~ and A~,+~ in E§ A2~ C B, A2~+~ C C, such that 

f2~+l<~fl, suppf2~ f')suppf~,+~=Q3 and (Tf2i)(t)> l + e21 for all tEA2 ,  and 

(Tf2~+~)(t) > 1 + e2~+~ for all t E A2~+~. This completes the construction of the f~'s 

and the A~'s. 

N o w  let y', = R (I[XA, It-'ga,). Then [[ y',[[ _-< [I R [[ = 1 + e, and (f,, U'y,) > I. Let 

K~ =supp  [,. Since U'  is interval preserving there exist elements z '~ E [0, y'~] such 

that U'z',=xg, U'y',. Clearly (f,,U'z',)>l and thus IIU'z',ll_->l. Let x,--  

II U'z',]J-'z ',. Then X, U, (x ',) and (K,) have the desired properties which concludes 

the proof. 

w In this section we present the proofs of our main results. 

PROOF OV THEOREM 1. It suffices to show that E contains a subspace G 
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isomorphic to C(A) such that Tic is an isomorphism since by theorem 1 of [9] G 

contains a subspace Go isomorphic to C(A) and complemented in E. Let V ~ be 

the unit ball of F '  and let W = T ' V  ~ Then W satisfies the hypotheses of Lemma 

2. Now choose 3 > 0 as in Lemma 2 and for e > 0 with 8 (1 - e ) 2 -  e > 0 choose 

{w'},~r and {x',},~r as in Lemma 2. Since E is separable there exist u E E, 

Ilu II = 1,  and an uncountable subset F, C F such that 1 - e  < (u, x;/llx;ll> for all 

y E F,. It follows from Lemma 3 that there exist a compact space X and an 

operator  S : C ( X ) - - ~ E  with S' a lattice homomorphism and S [ - 1 , 1 ] =  

[ - [ u l , l u l ] .  Then putting / z , = S ' x ' / l l x ' l l ,  Iltz, l l > l - e  for all y C F , ,  since 

there is an f~_ C(X)  with Ilfl l_- < 1 and S f=  u. By passing to an uncountable 

subset F2 CF~ we may assume that the family {x;/lltz , Illlx'lll,~,-= is dense-in-itself 

for the weak* topology. Since S'  is a lattice homomorphism the elements of 

{l x,/ l t t  z, ll},~r2 are pairwise disjoint and thus isometrically equivalent to the basis 

of I~(F2). Hence by Lemma 1 there is a subspace H of C(X)  isomorphic to C(z~) 

such that for all h C H, 

__/Lr_ 

This implies that for all h C H 

and finally, 

supvec~[ (h, S 'x" \  I i i x ; i j /  t > (1 -  e )21Ih II. 

sup,~r~l(Sh, x•)/--> 3(1 - e)211h II, 

sup,~F21 (Sh, w',) I > (6(1 - e)  2 -  e)llh II, 

supy,Ev,,](rSh, y ')l >= (8(1 - e) 2-  e )llh II. 

Hence the restriction of TS to H is an isomorphism, and thus G - - S H  is 

isomorphic to C(A) and Tr~ is an isomorphism. 

PROOFOF T1qEOREM 2. (C) =)' (d): If (c) holds then S o T is an isometry since 

is onto, and thus T is an embedding and clearly positive. 

(d) ::), (e): If T is as in (d) then [0, T1] is not weakly sequentially precompact. 

(e) :=), (f): If [0, x] is not weakly sequentially precompact, it follows from the 

main result of [11] that there exists a sequence (x,)C [0, x] equivalent to the 

usual l'-basis. The corresponding embedding T of l~ in E is clearly positive and 

is majorizing since T maps the unit ball of l '  into [ - x , x ] .  
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(f) =), (g): Let T: II---',E be a majorizing embedding. Let F be any closed 

sublattice of E containing the range of T. It follows from (IV. 3.4.d) of [12] that 

T considered as an operator  from 11 into F is majorizing and that T factors 
R $ 

through an AM-space M, ll---~ M ~ F with S positive. Now assume that F '  has a 

weak  order unit, say w'. Since F '  is the band generated by w' and since S', as the 

adjoint of a positive operator,  is order continuous, S'F' is contained in the band 

B of M'  generated by S'w'. Since M'  is an AL-space, B is the closed linear hull 

of the weakly compact order interval [0, S'w'] ,  i.e. B is weakly compactly 

generated.' Now T'  is onto and thus R 'B = l ~. Hence l ~ is also weakly compactly 

generated which is absurd. Therefore,  F '  cannot have a weak order unit. By 

taking for F the closed sublattice generated by the range of T one gets a 

separable sublattice such that F '  has no weak order unit. 

(g) =), (h): Let F be a separable closed sublattice of E and let u be a 

quasi-interior point of F [12, II. 6.2]. If F '  does not have a weak order  unit then 

there exists in F '  a normalized family {y'~}~r,, F1 uncountable, of positive 

pairwise disjoint elements. Since (u, y'~) > 0 for all 7 ~ F, there exist a 8 > 0 and 

an uncountable subset F C F1 such that (u, y '~) > 8 for all 3' ~ F. It is easily seen 

that the closed linear hull of {y'v}v~r is a sublattice of F '  lattice isomorphic to 

r ( r ) .  

(h) O (i): Let F be as in (h) and choose a quasi-interior point u E F. A 

standard argument shows the existence of an infinite bounded set A C F '  of 

positive pairwise disjoint elements, dense-in-itself for the weak* topology, with 

(u, y') = 1 for all y ' E  A. Le t /3  be the weak* closure of A. Since F is separable, 

B is weak* metrizable. Now choose by Lemma 3 a compact space X and a lattice 

isomorphism R from C(X) onto the ideal F. with R 1 -- u. Since F, is dense in F, 

R '  is a lattice isomorphism and its restriction is a homeomorphism of the weak* 

compact set onto the weak* compact set K = R'/3 ; in particular, K is also weak* 

metrizable. The family {R'y ' :  y '  C A } C C(X)' is dense-in-itself for the weak* 

topology and isometrically equivalent to the usual basis of l~(A). Now, as in the 

proof of proposition 3 of [10] it follows that there is a weak* compact set Z C K 

homeomorphic to the Cantor set A such that the canonical map 

S: C ( X ) ~ C ( Z )  defined by (Sf)(t~) = (f,/z) for all ~ EZ ,  f E  C(X) has an 

adjoint S' which is an isometry. (Observe that the separability assumption in 

proposition 3 of [10] is only required to ensure the metrizability of K for the 

weak* topology.) Since S is a positive operator,  S' is a positive isometry from an 

AL-space into another AL-space and hence a lattice isomorphism. Let Y be the 

inverse image S'-~Z C B. Then Y is also homeomorphic  to A Let T: F---~ C(Y)  
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be the operator  defined by (Tx) (y ' )  = (x, y') for all x E F, y ' ~  Y. By identifying 

C(Z) and C(Y)  canonically with C(•) it follows that S = T o R. Since S is onto, 

T is onto and clearly positive. Since R '  and S' are lattice isomorphisms T'  is a 

lattice isomorphism and hence T is almost interval preserving (see w q.e.d. 

(i) ~ (b): Let F be a closed sublattice of E and let T be an almost interval 

preserving operator  from F onto C(A). Then T'  is a lattice isomorphism and an 

embedding of C(A)' in F'. It follows that C(A)' is also lattice isomorphic to a 

closed sublattice of E '  (see the proof of Theorem 2, (e) :::> (a) in [7]). 

(b) f f  (a): This is trivial. 

(a) f f  (c): If e > 0  is given choose X, U: C(X)-->E, (x',) C E ' ,  and (K~) as in 

Lemma 6. Using Urysohn's Lemma one can choose a sequence @)C C(X)  of 

positive functions with f, = 1, f2, + f2,+, = f~ and fi (Ki) = {1} for all i E N. Now let 

(g,) be a total sequence of positive characteristic functions in C(A) with gl = 1, 

g2, + g2~+~ = g~, and g2~ ^ g2,+1 = 0 for all i E N. Then there exists an operator  

V: C(A)---> C(X) with Vg, = f, for all i E N. Clearly, V is an isometry and an 

order isomorphism. Hence, T = U o V is an order isomorphism with 11TII = 1. 

Now let (i~ be a sequence in N with i , .1E {2i,, 2i. + 1} for all n E N and let x '  be 

a cluster point of the sequence (xl.). Then 0_-< x'  and ttx'lI_-< 1 + e. It is readily 

verified that T'x' is a Dirac measure on A and that every Dirac measure on A can 

be obtained in this way. Now let K = { x ' E E ' : O < - x  ', ]Ix'l[_-< l + e ,  T'x' is a 

Dirac measure on A}. Clearly, K is weak* compact. Denote  the restriction of T'  

on K by ~,. Then preceding considerations show that ~ is a continuous map from 

K onto A (identify A with its canonical image in C(A)'). Finally, define 

S: E---~C(K) by (Sx)(x ' )=(x,x ' )  for all x E E ,  x ' E K .  Then K, q~, T, and S 

have the desired properties. 

This concludes the proof that (a)-(i) are equivalent. 

Now assume that E is a separable Banach lattice. It follows from the proof of 

(f) ~ (g) ~ (h) ~, (i) that one can now choose F = E. The implication (j) :::> (c) 

is trivial. To conclude the proof of Theorem 2 we show (a) => (j): Choose K, ~0, T 

and S as in the proof of (a) f f  (c). Since E is separable, K is metrizable. Since A 

is uncountable it follows from a result of Kuratowski ([4], p. 351) that there is a 

compact set K~C K homeomorphic  to A such that the restriction ~1~, is a 

homeomorphism. It follows from a result of Sierpinski ([13], p. 118) that there is 

a retract q~ from A onto q~ (K 0. Denote  the canonical injection of K1 onto K by 

X- Then tp o ~ ~ is a homeomorphism from K~ onto ~p (K~). If one replaces in (c) 

K by K~, q~ by 0oq~ ~ T b y  "/~ with Tf = T( foq , ) fora l l fE  C(q~(K,)),andS by 

with Sx = (Sx)IK, for all x E E, one gets (j). This completes the proof of 

Theorem 2. 
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REMARK. The  app l i ca t ion  of K u r a t o w s k i ' s  T h e o r e m  in the  p r o o f  of (a) f f  (j) 

is s imi lar  to  the  one  m a d e  by Pe/ 'czyfiski  in [9], where  it is shown that  if E is a 

s e p a r a b l e  Banach  space  and  F is a c losed  subspace  of E i somorph ic  to C(A)  then  

the re  is a c losed  subspace  G C F i somorph ic  to C(A)  and  c o m p l e m e n t e d  in E. A 

par t i cu la r ly  e legan t  p roo f  of PeJ 'czyfiski 's  T h e o r e m  may be  f o u n d  in [2]. 

W e  raise the  fol lowing ques t ion :  Suppose  C(A) is i somorph ic  to  a c losed  

subspace  of a Banach  la t t ice  E. D o  the  equ iva len t  cond i t ions  of T h e o r e m  2 ho ld?  
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